Lattice QCD Calculation of the Proton Charge Radius
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Proton Charge Radius

Since the proton is comprised of three quarks that are separated in space, it has an
extended charge distribution. The proton charge radius is the root mean square
distance of a charge carrier from the charge center of the proton:

(e = () = [ o) =an [ )

where p(r) is the charge density as a function of distance from the proton center.

he proton charge radius has been measured experimentally using both electrons
and muons as the probes. The measured radii [1] are

» Electrons: 0.8751 + 0.0061 fm
» Muons: 0.84087 &= 0.00039 fm

The electronic and muonic measurements are shown in red and blue, respectively.
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The 50 discrepancy is currently unresolved and is called the proton radius puzzle.

Proton Form Factors
One method of measuring the proton charge radius is through scattering

experiments, where a beam of leptons is fired at a proton target and the energies
and angles of the scattered leptons are measured. The data are fitted to electric and
magnetic form factors Gg and Gy. In the non-relativistic limit, the electric form
factor is related to the charge distribution by Fourier transform [2]:

Ao [
Ge(q°) = Tal rsin(|q|r)p(r)dr
0
The charge radius is then given by
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Computing the Proton Charge Radius
On the lattice, we can simulate lepton-proton scattering experiments and calculate
the amplitude

(Ba(t, p')Ou(7)Bs5(0, p))
of a proton being scattered from a state with momentum p to momentum p’.
O,(7) is an operator corresponding to interaction with a photon at Euclidean time
7 < t. When sandwiched between proton spinors, O,, can be expanded as |3, 4]

1.F1(Q%) + 22T Fy(Q?)

2m,

where the Dirac and Pauli form factors F;, F, are related to the electromagnetic
form factors [4] by

Q2
GE(Q%) = A(Q?) 7 >F2(Q°)
Mp
Gu(Q?) = A(Q%) + R(Q?)
By adjusting p and p’, we can obtain a plot of Gg at various values of Q?, from
which we would like to determine the slope at O.

We used the lattice QCD software Chroma and related packages [5, 6, 7] for our
calculations.
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Our Approach

Since p, p’ are quantized on the lattice, it is not possible to use values of @2
arbitrarily close to 0. When computing the slope, this introduces unknown
systematic uncertainties since the shape of the form factor graph near 0 is unknown.

If the final and initial states were different in mass, we could have Ap = 0 but have
AE # 0 and QR? < 0. In the limit where the mass splitting vanishes, we could have
Q> arbitrarily close to 0. This would allow us to extract the slope at zero without
large systematic uncertainties from extrapolation in Q~.

We can introduce this mass splitting by performing the calculations with
nondegenerate u and d quark masses and then looking at the current O,, = uv,d,
which changes a proton into a neutron. (This also introduces a third term
ml'i”szg(QQ) to our expansion of O, in terms of form factors.) We will exaggerate
this mass splitting for calculation purposes and then extrapolate to the physical
values. This isovector current, while not directly corresponding to a physical

process, gives form factors related to the proton and neutron form factors:
vV _ p
FY = F7 —

The neutron form factors are well determined by experiments scattering neutron
beams off the electron cloud of lead atoms [8], so a determination of the isovector
current is sufficient to calculate the proton form factors. Furthermore, the value of
F,Y at @* = 0 is known very precisely from measurements of nucleon magnetic
moments, so the only parameter we need to determine is the slope of F;".

Results
We used this method on an ensemble of 750 243 x 64 configurations with lattice

spacing a = 0.12 fm and sea pion mass 440 MeV. We took the lighter valence quark
(the one we call u) to be equal to the sea quark mass and varied the heavier valence
quark mass to cover a range of nucleon mass splittings from 0 to 0.44 GeV.

This is a plot of the Dirac form factor F;Y(Q?) plotted against Q° for m, = 1.52
GeV, m, = 1.75 GeV. The various values of Q7 arise from various combinations of p
and p’ with |p — p’| < 27 /L, the smallest nonzero change in momentum allowed on
a lattice of length L.
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By repeating this at various nucleon mass splittings 0 = m, — m,, we can fit F; to
the data in the (Q?, ) plane using the fit function

F1(0, Q%) = A(1 + C6* + DQ? + ESQ* + F&°)

where A is a renormalization constant and the coefficient of the 0 term is set to 0 by

the Ademollo-Gatto theorem [9]. The value of Fl%o)ggg\(;:@:o that we are interested

in is just given by the coefficient D.
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Results (cont.)

Below, we show the fit function and the locations of all our data points in the
(Q?,0) plane. Our fit corresponds to a charge radius of 0.320 4= 0.074 fm? (not
counting systematic uncertainty from the fit) at a pion mass of 440 MeV.
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Comparison to Other Work

Some attempts to compute the charge radius on the lattice have often used the
so-called dipole fit, where Fi(@?) is assumed to have the form 1/(1 + @Q2/A?)?.
Such an assumption gives rise to uncontrolled systematics.

A more general approach, called the z expansion, involves transforming the
momentum transfer t = —Q? by

o \/tcut t \/tcut _ tO

\/tcut_ t"‘\/tcut_ tO
(where t.. = 4m? and ty can be chosen arbitrarily) and then Taylor expanding
Fi(z). A small model dependence is introduced by truncating the series, but this can
be controlled by comparing fits with different numbers of terms. [10] used the z
expansion at the physical point to estimate the proton charge radius as

(rg)V = 0.787 £ 0.087 fm?.
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Another approach is the so-called Rome method, which introduces twisted boundary
conditions to modify the momentum quantization condition and then differentiates
with respect to the twist angle. This eliminates extrapolation-related systematic
uncertainties but has a noisy signal. A physical-point calculation using the Rome

method [10] obtained a charge radius of (rZ)"Y = 0.753 £ 0.273 fm?, a much larger
uncertainty than the z expansion provided.

In contrast, our work has potentially large systematics from the 0 — 0 limit. In
principle, we could reduce these by using smaller values of §, but since —Q? < §?, it
is difficult to fit the @ dependence at small . The difficulty of controlling the
systematics resulting from the 0 — 0 limit makes our method impractical compared
to other approaches.
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